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Employing oval-shaped quantum billiards connected by quantum wires as the building blocks of a linear
quantum-dot array, we calculate the ballistic magnetoconductance in the linear-response regime. Optimizing
the geometry of the billiards, we aim at a maximal finite over zero-field ratio of the magnetoconductance. This
switching effect arises from a relative phase change in scattering states in the oval quantum dot through the
applied magnetic field, which lifts a suppression of the transmission characteristic for a certain range of
geometry parameters. It is shown that a sustainable switching ratio is reached for a very low-field strength,
which is multiplied by connecting only a second dot to the single one. The impact of disorder is addressed in
the form of remote impurity scattering, which poses a temperature-dependent lower bound for the switching
ratio, showing that this effect should be readily observable in experiments.
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I. INTRODUCTION

The ability to reduce the size of electronic circuits to the
nanometric scale has lead to increasing interest in the prop-
erties of electron transport in the mesoscopic regime and its
dependence on externally tuned parameters. Formation of
two-dimensional �2D� structures of controllable geometry at
semiconductor interfaces, so-called electron billiards, sets the
experimental grounds for investigating phase-coherent trans-
port of electrons. Open semiconductor quantum billiards
serve as artificial scatterers of highly tunable characteristics
and have pioneered the understanding of the underlying
physics on both experimental and theoretical grounds. They
are used to demonstrate and investigate a series of interesting
phenomena on the mesoscopic level, such as shot noise in
transport through charged dots,1,2 Fano resonances,3–6 An-
dreev tunneling and reflection,7–9 decoherence in ballistic
nanostructures,10,11 as well as classical to quantum transitions
and imprints of nonlinear dynamics.7,12–14 Further, the geom-
etry of a conducting structure is shown to have a major im-
pact on the resulting transport phenomena.15,16 The magne-
toconductance of such nanodevices proves as an essential
signature for the underlying interference phenomena and has
therefore been studied extensively.17–20 The Aharonov-Bohm
�AB� effect21 is directly observed in systems of quantum
rings18,22–24 but also plays a central role in describing mag-
netoconductance fluctuations in more complex mesoscopic
systems in weak magnetic fields.25,26 At higher magnetic
field strengths the quantum-Hall effect sets in, accounting for
a steplike varying magnetoconductance, formation of edge
states, and characteristic multichannel fluctuations in the
transmission spectra.27–29 Localization effects and conduc-
tance fluctuations manifest themselves in a large variety of
open quantum-dot systems, regardless of whether
ballistic12,19,20,30–32 or diffusive32–35 transport is considered.
Assembling individual dots into coupled arrays or lattices
gives rise to new features of the system’s overall response,
depending on the type and strength of coupling.25,36–40 Of
particular interest are systems where the interplay between
the various effects of electron transport mentioned above can
be used to achieve a tunable quantum conductance, in terms
of designing the size, shape, and material specific features of

the conducting device, as well as varying macroscopically
accessible parameters such as externally applied fields, tem-
perature, and gate voltages controlling the coupling strength
between constituents.11,15,25,35,40–42

In this paper we exploit the dependence of the conduc-
tance on the geometry of a 2D electron billiard and examine
its functionality as a switch when a magnetic field is turned
on. Employing oval-shaped billiards as the building blocks
of a linear quantum-dot array, we aim at a maximal finite
over zero-field ratio of the conductance by optimizing the
system within an achievable parameter range. The switching
effect arises from the phase-changing effect of the applied
field, which raises a suppression of transmission present for a
certain deformation of the oval. The assembly of dots into a
chain eventually leads to banded transmission spectra for a
large number of dots, with details depending on the interdot
lead length. The conductance, taken as the thermally aver-
aged transmission function, oscillates with increasing field
strength; at higher fields edge states form, which conduct
ideally. The switching ratio corresponding to the first mag-
netoconductance maximum acquires a multiple value by add-
ing one more oval to the single one, while it fluctuates for
further added dots. The impact of impurities may enhance or
weaken the switching effect, whether or not they block the
leads coupled to the dots, imposing a temperature-dependent
lower bound on the switching ratio in the presence of weak
disorder.

In Sec. II the setup and geometry of the 2D structure are
specified and the theoretical framework as well as computa-
tional approach are presented. In Sec. III the main features of
the obtained transmission spectra are discussed along with a
description of the underlying mechanisms. This is followed
by an analysis of the switching ratio in dependence of the
deformation of the billiard shape, the magnetic field strength,
and the length of the multidot chain at different temperatures,
in order to determine a device setup optimal for switching,
within an achievable parameter range. Finally, the modifica-
tion of the switching ratio in the presence of disorder is stud-
ied. Section IV provides a summary of results, concluding on
the functionality of the switching mechanism.
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II. SETUP AND COMPUTATIONAL APPROACH

The confining potential of the single dot is assumed to be
of hard wall character, leading to Dirichlet boundary condi-
tions for the wave function. We use an oval billiard, whose
shape is parametrized as43

x��� = R���

2
+ 1�sin��� +

�

6
sin�3��� ,

y��� = R���

2
− 1�cos��� −

�

6
cos�3��� , �1�

where �� �0,2��. The parameter � tunes the deformation of
the dot, which becomes a circular billiard of radius R if �
=0. In this case the classical dynamics of the closed system
is integrable, whereas for ��0 it becomes nonintegrable
with mixed phase space.43,44 For reference with respect to the
device specific parameters, a mesoscopic size of R
=220 nm is employed. At the right and left ends of the elon-
gated structure semi-infinite leads of width W=0.3R are con-
nected, representing the coupling to electron reservoirs. The
use of semi-infinite leads models the ideal case of vanishing
reflection of the electrons upon reaching the reservoirs. In the
multidot case this single cavity is replaced by a chain of N
identical oval dots connected to each other through leads of
length L, where L equals the distance between adjacent oval
edges aligned with the semi-infinite leads possessing the
same width. Figure 1 provides a picture of the 2D structure
for N=2 connected dots.

Restricting ourselves to low temperatures and a small sys-
tem size we neglect inelastic processes and do not account
for electron-electron or electron-phonon interactions. The
single-particle Hamiltonian is, within an effective-mass ap-
proach, of the form

H =
�p − eA�2

2meff
+ V�r� , �2�

where we choose a value of meff=0.069me corresponding to
GaAs, with me denoting the electron mass. V�r� is the hard
wall potential, and the vector potential A produces a mag-
netic field perpendicular to the plane of the structure, over
which it is homogeneously extended with strength B, drop-
ping off linearly to zero in the exterior leads. We will con-
centrate on the magnetoconductance switching effect at a
very low magnetic field strength �	0.02 T�, where the Zee-
man splitting for GaAs �	3.6 �eV� is negligible �	0.1%�
with respect to the Fermi energies we consider, and therefore
do not take into account the coupling of the electronic spin to

the magnetic field. The Hamiltonian is discretized on a tight-
binding lattice, with the magnetic vector potential incorpo-
rated through Peierls substitution. The coupling of the sys-
tem to the external semi-infinite leads placed on the left �l�
and right �r� of the billiard is described by self-energies �l/r,
which are analytically obtained for B=0 and contribute non-
Hermitian blocks to the Hamiltonian matrix. From the
single-particle Green’s function of the system,

G�E� = �EI − �H + �r + �l��−1, �3�

the part Grl describing the propagation from the left to the
right lead is computed using a parallel implementation of the
recursive Green’s function method �RGM�, where a decom-
position scheme among communicating processors allow for
the computation to be done in a parallel manner.45 In the
multidot case the chain is built up by a repeated module,
which consists of the oval cavity with lead stubs of length
L /2 on the right and left �see Fig. 1�. Having found Grl for
one module, we calculate the Green’s function connecting
the two outer leads using a modular variant of the RGM,
which was originally presented in Ref. 46. In this algorithm
the Green’s function of the joined module is calculated
using the Dyson equation. The transmission of the device is
finally evaluated via the Fisher-Lee relations,47 T�E�
=Tr��rG�lG

†�, with �l/r= i��l/r−�l/r
† �. It is worthwhile not-

ing that in the two-terminal device we encounter, even in the
presence of a magnetic field, the transmission function is
symmetric under the exchange of the contact leads, i.e., the
transmission from left to right equals that from right to left.48

The computed Green’s function of the system is also used to
calculate the local density of states �DoS� at site r through
the relation ��r ,E�= 
r�A�E��r� /2�, where A=G�G† is the
spectral function and � is generally a weighted sum of �l
and �r according to the Fermi distributions of incoming
states in the two leads. In the cases presented here, we have
chosen �=�l, i.e., ��r ,E� corresponds to the probability
density resulting from an incoming monochromatic wave of
energy E from the left lead.

The calculated transmission determines the macroscopi-
cally measurable conductance of the device. In the linear-
response regime at low temperature � the conductance for
given Fermi energy EF can be obtained by the Landauer
formula,49,50

G��;EF� =
2e2

h



−	

+	

T�E�Fth��,EF;E�dE , �4�

with the thermal broadening function

Fth��,EF;E� � −
� f�EF;E�

�E
=

1

4kB�
sech2�E − EF

2kB�
� , �5�

where f�EF ;E� is the Fermi distribution function centered
around EF, and thus it essentially equals the thermally aver-
aged transmission around the electron Fermi energy, with a
width determined by the temperature �.

W L R (1 - )� � �

module

FIG. 1. Geometry of the billiard for N=2, �=0.5, and L=W
=0.3R, consisting of the repeated module and the outer leads which
represent the connection to reservoirs �see text�.
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III. RESULTS

A. Transmission spectra

Concentrating on the transmission in the deep quantum
regime, we restrict the energy of the incoming electrons such
that only the transversal ground state of the leads is energeti-
cally available. Thus the dimensionless channel number 

=kW /�, where k=�2meffE /�, takes on values in the range
1�
�2, that is, in the first channel of transmission. For the
size of the device specified, this corresponds to a Fermi en-
ergy in the range 1.2�EF�5 meV. A detailed analysis of
the transmission within the first channel in terms of the quan-
tum states in the single oval dot has been presented in Ref.
15. Here we focus on the modification of the transmission
when dots are connected to form an array, as well as the
conductance of the device �where the details of the transmis-
sion are thermally averaged out� as a function of the geom-
etry parameters and the magnetic field strength. The zero-
and finite-field transmission T�
� through the device is
shown in Fig. 2 for different numbers of dots N in the chain,
with deformation parameter �=0.5 and interdot distance L
=W. As the channel number 
 measures the wave number in
units of � /W, T�
� depends only on the ratio W /R. Our
calculations show that changing W /R within 0.2
W /R

0.4 introduces mainly a shift in T�
� according to the im-
plicit energy scaling, i.e., the transmission is largely deter-
mined by the geometry of the billiard and not by the lead
width. For values of W /R�2, the transmission obviously
has to acquire the value of the unperturbed quantum wire. In
the following we restrict ourselves to the case of W /R=0.3.
The zero-field transmission in the single-dot case consists of
a rather smoothly varying background, on which sharp Fano
resonances are superimposed. The resonances of Fano type

are characterized by the asymmetry in their line shape, owing
to the occurrence of a zero in the transmission, very closely
separated from the resonance energy; at a sweep of the en-
ergy over a Fano resonance, the transmission goes first to
zero and then to one �or first to one and then to zero�, and
finally back to the continuous background. This behavior
arises from the presence of quasibound states in the scatter-
ing system that are coupled to a continuum of states.51 In the
multioval case these sharp resonances are N-fold split �this
very small splitting is generally not resolved on the scale of
Fig. 2�, while, additionally, Breit-Wigner �BW�-type reso-
nances of varying width emerge. The latter subsequently un-
dergo a splitting into N−1 subpeaks for an array of N dots.
The resonances of BW type, although generally asymmetric
on a varying background, are distinguished from the Fano
resonances by the absence of the accompanying zero in the
transmission. Their origin is the resonant tunneling of the
incoming wave through the system, as will be demonstrated
in the following for our setup. For sufficiently many dots
�represented in Fig. 2 by the case of N=20�, the multiply
split resonances saturate into bands of densely positioned
peaks, which is reminiscent of the band structure of energy
levels in a periodic quantum system. In the presence of the
weak field the smooth background transmission is overall
increased, the sharp resonances are slightly shifted in energy,
and the transmittive bands for large N are broader.

The sharp Fano resonances of the single-dot case corre-
spond to quasibound states that are strongly localized within
each dot, at energies which coincide with eigenenergies of
the closed oval billiard without attached wires, and lie in the
continuum of energies of the incoming wave. There is a se-
ries of equidistant resonances corresponding to the different
longitudinal modes for each given excited transversal mode
in the oval.15 The spatial confinement of such states de-
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FIG. 2. �Color online� Transmission spectra in the first transversal channel for varying number of dots N with deformation parameter
�=0.5 and connecting lead length L=W=0.3R, at B=0 �solid black line� and B=Bc�20 mT �dotted red line�.
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couples them from the leads, and consequently they do not
contribute significantly to the conductance of the device. The
states that can provide a substantial contribution to the con-
ductance are those with a longitudinal spatial extension onto
the openings of the leads. They are strongly coupled to the
leads of the open system in the case of constructive interfer-
ence at the openings, leading to a broad transmission maxi-
mum. We refer to these states, which extend from the oval
into the leads, as leaking states. The number of leaking states
is determined by the allowed excitations inside the cavity
subject to the constraint of the energy being within the first
channel. The interference of leaking states belonging to dif-
ferent transversal modes generates broad humps in the
single-dot transmission, where T�
� is substantial over a
finite-energy interval �constructive interference�, separated
by points of vanishing transmission �destructive interfer-
ence�. The slowly varying envelope behavior of the transmis-
sion spectrum exhibits a wide energy range where the overall
transmission is strongly suppressed. For the specific shape of
the cavity corresponding to the chosen value of �=0.5, this
suppression valley is centered around the middle of the first
channel.

In order to analyze the transmission of the multidot chain,
in Fig. 3�A� we focus on the transmission around the BW
resonance appearing for N=2 at 
=
p�1.384, and show its
�N−1�-fold splitting for increasing N. Also the sharp Fano
resonance just below is included, whose splitting �of the or-
der of �
	2�10−5 or �E	0.1 �eV� remains unresolved
even at this scale. The N-fold splitting of the Fano reso-
nances is a consequence of the degeneracy of the confined
single-dot eigenstates in the case of N dots, which are
coupled very weakly through the connecting lead due to their
strong localization within the ovals. It is thus similar to the
splitting of the energy levels of atoms brought together to
form a weakly bound molecule, with an energy split propor-

tional to the interatomic coupling.52 The BW-type resonances
of the multidot case, which are narrower �wider� at energies
where the single-dot transmission T�N=1��
� is lower �higher�,
are of different origin. They arise from the resonant tunnel-
ing of the incoming wave through the system of the ovals
and the connecting bridges. Indeed, the emergence of these
resonances and their �N−1�-fold splitting can effectively be
deduced from the one-dimensional �1D� scattering through N
potential barriers �or equivalently, N−1 resonators�, where
the transmission amplitude of scattering through each barrier
possesses an energy-dependent norm and phase. Two barriers
� and � with transmissions T� and T� give the total trans-
mission

T�� = T�T�/�1 + R�R� − 2�R�R� cos �� , �6�

where R�/�=1−T�/� and � is the phase shift acquired by
reflection from � to � and back to �. For T�=T�=T�N=1� and
��
 this gives rise to resonance peaks in T�N=2� which are
equidistant in 
 and have a width that increases with T�1�. In
our case though, due to the structure of the ovals that con-
stitute the barriers, the phase shift � is not linear in 
. This
perturbs the periodicity of the resonances, as we observe for
T�2��
� in Fig. 2, or equivalently, yields an energy-dependent

effective resonator length L̃�
����
� /
. Formula �6� can
be iterated to obtain the transmission for N�2 ovals, i.e.,
T�N�=T���T�=T�1� ,T�=T�N−1� ;��,�=�1,N−1�, where � now re-
sults from reflections between 1 and N−1 barriers. The �N
−1�-fold splitting of the T�2� resonance, shown in Fig. 3�A�,
and the saturation into a band in the transmission spectrum
for large N are then reproduced for a system that is symmet-
ric under the exchange �↔� �which, in our case, renders the
dots identical�, provided that the phase difference between
transmission and reflection amplitude of the single barrier is
equal to �� /2, as is the case for the single oval with sym-
metric leads. Varying the resonator length modifies the con-
ditions for resonant transmission by shifting the resonances
in energy and changing their periodicity. In Fig. 3�B� the
transmission through N=2 connected dots, as well as the
normalized conductance at �=0.2 K, is plotted over the en-
ergy range of a single-dot transmission hump for varying
connecting bridge length L. With a slight increase in L
�L /W=1.0,1.1,1.2,1.3� the BW resonances are shifted to
lower energy, and for longer bridges �L /W=10,100� the
number of resonances in the same interval increases. We no-
tice that the center positions of the �split� Fano resonances
are unaffected by the variation in the bridge length. Detailed
features of the transmission line shape, such as the Fano
resonances and the BW resonance peaks for large L, are
washed out at finite temperature � by thermal averaging
through formula �4�, making their contribution to the con-
ductance G�EF� negligible compared to the smooth back-
ground.

As we see in Fig. 3�A�, the addition of a dot to the exist-
ing chain of N dots at resonance energy lowers the transmis-
sion from unity to the single-oval value T�1��
� at that energy
�note that the transmission at the dips between the reso-
nances in T�N�4��
� can acquire values even lower than
T�1��
��. In particular, the transmission at the energy position
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FIG. 3. �Color online� �A� T�
� for B=0 �solid black line� and
B=Bc �dotted red line� for L=W and varying N, in the vicinity of

p�1.384, with labels a, b, c, d, and e for the resonances referred
to in the text, �B� T�
� �solid black line� and g��=0.2 K;
F�
�dashed magenta line� for a single dot �bottom� and for two dots
with varying bridge length L, within a small window of the channel
number 
 covering the energy range of a smooth hump in the
single-dot transmission.
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of the central resonance at 
=
p oscillates between unity and
T�1��
p� with even and odd N, respectively: T�N even��
p�=1,
T�N odd��
p�=T�1��
p�. Furthermore, the resonances for each
N are positioned symmetrically around 
p, so that the form-
ing bands in the transmission for large N are centered around
the T�2��
� resonance peaks. In Fig. 4 this behavior of the
transmission function for varying number of dots is illus-
trated in terms of the states forming in the system for N
=1,2 ,3 ,4 dots, by plotting the zero-field local DoS at the
energies �rows a, b, c, d, and e� of the resonance peaks la-
beled �with corresponding letters� in Fig. 3�A�, for an elec-
tron incident on the left. The spatial oscillations of the DoS
in the incoming lead come from the interference of the in-
coming wave with the wave that is backscattered from the
dot array. Their absence is a signature of a resonance peak in
the transmission spectrum, as there is no overall backscatter-
ing and transmission is unity. It must be noted that the color
map for the DoS in each of the subplots is normalized to the
maximal value, such that same colors at different subplots do
not represent equal absolute values �which are irrelevant in
the present analysis�. Starting with the single oval in the first
column �Fig. 4, �a1�–�e1��, we see that the incoming wave is
reflected at all energies �a�–�e� around 
p, leading to a trans-
mission significantly less than unity �T�1��
p��0.07�. When
a second oval is added, there is an energy between �a� and
�e�, namely, 
=
p represented by row �c�, for which the
backscattering of the single oval is cancelled by the presence
of the added oval and the connecting bridge; the wave is
multiply reflected between the two ovals through the bridge,
resulting in a quasistanding wave along the chain �see �c2��
that constitutes a resonant state for the open system, leading
to a transmission of unity. A third oval added in front of the
two introduces the backscattering again at 
p �see �c3�� while
the transmitted part from this first oval is perfectly propa-
gated through the remaining two as in �c2�. Thus the trans-
mission in �c3� equals the single-dot transmission, T�3��
p�
=T�1��
p�. The backscattering of the third oval at 
p is can-
celled by addition of a fourth oval �see �c4��, just as we went
from �c1� to �c2�, so that the T�2��
p� resonance peak is re-
covered in T�4��
p�, although with a smaller width. Thus, the
sequential cancellation of the backscattered wave leads to the
even-odd oscillations of T�N��
p� seen in Fig. 3�A�. Resonant
states are also accessed for three and four dots in �b3� and
�a4� below 
p and in �d3� and �e4� symmetrically above 
p.
Similarly, for each number of dots N there are N−1 acces-
sible resonant states, including the one at 
p for even N, at
energies symmetrically positioned with respect to 
p. Just as

the T�2� resonance is recovered in T�4�, each T�N� resonance is
recovered at multiples of N, where the resonant state in the
chain can be decomposed into multiple connected resonant
states. We notice that the two branches of resonances, one
below and one above 
p, are associated with two different
leaking eigenstates of the single oval with closed leads—
they inhabit, for example, the central oval in �b3� and �d3�,
respectively. Their interference in the open single oval sys-
tem forms the scattering wave in column �1�. These three
wave patterns are combined among the N ovals in the open
chain to form the N−1 resonant states leading to the peaks
around 
p. The formation of resonant states occurs similarly
around all T�2� resonances of BW type �seen in Fig. 2�. Char-
acteristically, moving from a T�2� resonance to the next one at
higher energy adds a node in the quasistanding wave within
the two ovals and the connecting bridge. Increasing the
length of the bridge shifts the resonances to lower energies
and reduces the 
 distance between them, as the wavelength
in the quasistanding wave overall increases, in accordance to
the effective resonator picture described above.

Conclusively, there are two types of resonances to be dis-
tinguished in the transmission spectra for the array of N dots:
�i� the series of equidistant Fano resonances, arising from the
confined single-dot excitation modes in the continuum of the
channel, which are N-fold split due to coupling between the
ovals, and �ii� the series of nonequidistant BW resonances,
resulting from resonant tunneling states that form in the
chain, which are �N−1�-fold split.

Following the discussion above, we now consider the im-
pact of the perpendicular homogeneous magnetic field on the
transport through the device. When the field is switched on
the phases of the different states forming in the ovals are
modulated, and consequently the interference of the states
contributing to transmission changes. Thus, depending on the
field strength, the transmission spectra for the single and
multiple dots are accordingly modified. As we see in Fig. 2
�dotted line�, the weak field of 20 mT introduces dramatic
changes in the spectra. The slowly varying background of the
single oval case is generally raised throughout the channel,
removing the characteristic suppression around its middle in
the absence of the field. The overall very high transmission is
interrupted by a series of dips in its line shape. The sharp
Fano resonances undergo only a very slight energy shift �vis-
ible for the Fano resonance in Fig. 3�A�� because the spatial
distribution of the wave function remains practically unaf-
fected by the low field chosen. Again the multidot chain
provides a more complex transmission spectrum, resulting

(a)

(b)

(c)

(d)

(e)

1 2 3 4

FIG. 4. �Color online� Zero-field local DoS
for N=1,2 ,3 ,4 dots with �=0.5 and L=W for
energies in the vicinity of the �N−1�-fold split
resonance peak at 
=
p�1.384, with incoming
electron on the left. Rows �a�, �b�, �c�, �d�, and �e�
correspond to the energies of the resonances la-
beled with the same letters in Fig. 3�A�. The color
map for the DoS in each subplot is normalized to
its maximal value, further the color maps the
square root of the DoS to enhance contrast.
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from the subsequent matching conditions for the wave func-
tion at the connections between the dots. The BW and Fano
resonances are multiply split like in the field-free case, and
dips and plateaus become sharper and more pronounced as
dots are added to the chain, saturating into a banded trans-
mission. In contrast to the field-free case, the transmission
pattern is now dominated by narrower gaps and wider trans-
mittive bands. Thus, also for the long chain of dots the over-
all transmission is drastically raised by the applied field. A
more detailed analysis of the modification of the conduc-
tance with varying field will be presented in the next subsec-
tion.

B. Conductance switching

The conductance G�� ;EF� at temperature � and Fermi
energy EF is calculated by thermally averaging the transmis-
sion T�E� around EF according to Eq. �4�. For direct com-
parison to T�
�, the dashed curve in Fig. 3�B� shows the
normalized conductance g�� ;
F�= h

2e2 G�� ;
F� as a function
of the Fermi channel number 
=
F=�2meffEF /�2W /� for
�=0.2 K. At zero temperature the conductance coincides
with the transmission, but as � is increased peaks and dips in
the conductance become less pronounced due to the increas-
ing width of the thermal broadening function �Eq. �5��. Al-
ready at the low temperature chosen in Fig. 3�B� ��
=0.2 K�, the detailed structure of the transmission is essen-
tially lost; the sharp resonant peaks are washed out, reflect-
ing their negligible contribution to the conductance. Also the
formation of sharp transmittive bands for the multidot chain
is relaxed with thermal averaging. For long interdot leads
�L /W=10,100 in Fig. 3�B�� the conductance features follow
the trend of the single dot case, that is, it exhibits similar
humps in energy, yet with smaller amplitude. Similar modi-
fications of the transmission spectra through thermal averag-
ing hold for the conductance profile in the presence of the
magnetic field �not shown�.

A key feature of the oval-shaped cavity is the formation of
the wide suppression valley in the transmission spectrum of
the first transversal channel, which is essentially retained
also for the conductance at low temperature. In order to dem-
onstrate the suitability of the chain of dots as a magnetically
induced conductance switch, we exploit the lifting of this
suppression when the field is turned on, aiming at a high
ratio of finite over zero-field conductance. In the following
we optimize the switching ratio taking into account all rel-
evant parameters �� ,B ,L ,N�, as well as finite temperature
and impurity-scattering effects �see Sec. III C�. First we con-
sider the quantity Goff

min which is the zero-field finite tempera-
ture conductance minimized with respect to the position of
the Fermi energy in the first channel.

In Fig. 5, goff
min= h

2e2 Goff
min is plotted as a function of � at

different temperatures for a single oval dot. We see that an
optimal value for goff

min is obtained around �=0.5, with a small
dip at �=0.55, while it increases for larger or smaller defor-
mation of the oval. It must be noted here that the modifica-
tion in the spatial extension of the oval for a change ��
�0.05 is of the order of 1%, a challenging accuracy for an
experimental realization of the device. We therefore keep the

roughly optimized value of �=0.5 as a reference for the fol-
lowing analysis. As shown in the inset of Fig. 5, the channel
number 
min of this minimum depends approximately lin-
early on �, where the corresponding Fermi energies are lo-
cated close to the center of the first channel. For �=0.5 we
have 
c=
min��=0.5��1.46 in the single dot case �N=1�.
This shift of the optimal Fermi energy, which holds for all
temperatures considered, is due to the modification of trans-
versal modes inside the dot, which are shifted to higher en-
ergies as the oval becomes narrower with increasing �.

The single dot switching ratio S�N=1��B�=Gon
�N=1��B� /

Goff
�N=1� at 
=
c is shown in Fig. 6 for varying magnetic field

strength at different temperatures. As S�1��B� equals the finite
field conductance normalized to Goff

�1�, it describes the
changes in the conductance induced by the field. For low-
field strengths �inset of Fig. 6� the modulation of the phase of
the leaking states in the dot leads to AB-type oscillations in
the conductance. At the energies we consider here, only three
of these leaking states are present.15 However, the presence
of more than two channels inside the dot gives rise to the
superposition of magnetoconductance oscillations so that
S�1��B� loses the periodicity expected for AB oscillations of a
1D quantum ring. As the field strength is increased, apart
from their phase, also the spatial distribution of the states in
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FIG. 5. Minimal zero-field conductance goff
min �see text� as a func-

tion of the deformation parameter � for a single dot at temperatures
�bottom to top� �=1.0,1.1, . . . ,2.0 K; the inset shows the change
in the optimized channel number 
min with � at �=2 K �the de-
pendence is the same for the other temperature values�.
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FIG. 6. Single-dot switching ratio S�1� at 
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=0.7,1.0,1.4 K; the inset shows the irregular oscillations for low
field strengths.
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the dot is affected. Confined states are eventually deformed
into leaking ones, opening further channels for the transmis-
sion. The first magnetoconductance peak at Bc�0.02 T is
seen to be the highest in the low-field regime, giving a
switching ratio of S�1��B=Bc��65 at �=0.7 K. For higher-
field strengths the transmittive states are gradually localized
into edge states �with Larmor radius 
R /4 for B�0.8 T�
along the border of the cavity, all within the first magnetic
Landau level.27 Following the edges of the billiard, the elec-
trons are now more easily transmitted, resulting in an in-
creased overall conductance. At a field strength of B
�1.2 T these modes become perfectly transmittive along
the edges of the structure, and the switching ratio reaches a
plateau of maximal value �S�1��1.2
B
2.2 T��70 at �
=0.7 K�. For even higher magnetic field strength the trans-
mission decreases drastically as the incoming electrons
gradually fail to overcome the magnetic barrier provided by
the first Landau level and the conductance drops to zero. At
higher temperatures the features of the magnetoconductance
remain; however, as a broader energy window with higher
transmission parts is contributing to the thermal averaging in
Eq. �4� through the broadening function �Eq. �5��, the switch-
ing ratio is generally lowered because Goff

�1� increases. Also
the amplitude of the oscillations decreases with temperature,
as the magnetically induced changes in the detailed structure
of the transmission have a smaller impact on average. For
N�1 the magnetoconductance behaves similarly but the
switching ratio overall acquires higher values because of the
even lower zero-field conductance Goff

�N�, resulting from the
formation of gaps in the transmission spectra.

The magnetoconductance is calculated for spinless par-
ticles and hence does not describe electronic transport for
high magnetic field strengths. But, as we are aiming at a high
switching ratio, we concentrate in the following on the first
maximum Sc

�N�=S�N��B=Bc�, which occurs approximately at
the same field strength Bc�20 mT for all considered num-
bers of dots N. For this weak magnetic field we can neglect
the Zeeman splitting. In Fig. 7, Sc

�N� is presented for a varying
number of dots in the chain, again at different temperatures.
We allow for the parameter 
c

�N�, which represents the scaled
Fermi energy of the incoming electrons, to be optimized in-
dividually to minimize Goff

�N� for each dot number N. At suf-
ficiently low temperature, by connecting a second oval to the
single one we gain a substantial factor with respect to the

increase from Sc
�1� to Sc

�2� ��320 for �=0.7 K�, which, as
pointed out, results from the lower zero-field conductance.
For N�2 the switching ratio fluctuates around a
temperature-dependent mean value, due to its high sensitiv-
ity with respect to the optimized Goff

�N� at low temperatures,
which changes for each N. At higher temperatures the fluc-
tuations are weakened but Sc

�N� is then also lowered drasti-
cally.

It is obvious that the optimization of the switching ratio
strongly depends on the temperature: High switching ratios
require low temperatures, �
2 K for our setup. Neverthe-
less, we see that the current switching functionality of the
device is significantly enhanced throughout the temperature
range considered, by taking, e.g., two dots instead of a single
one.

C. Impact of impurities

Let us explore the impact of impurity scattering, i.e., dis-
order, on the magnetoconductance. This is implemented in
the form of remote impurity scattering in the presence of a
modulation-doped layer above the 2D structure. We consider
pointlike negatively charged impurities of 2D density nimp
distributed on a plane at distance d above the 2D electron gas
�2DEG�, excluding them from the region of the semi-infinite
leads. The plane is partitioned into small pieces of area
1 /nimp, within each of which one impurity is placed at ran-
dom position, thus constituting a quasirandom distribution of
impurities, with an upper bound on their local concentration.
The electrostatic potential of each impurity is screened by
the 2DEG at the plane of the device structure so that the
effective potential that an electron feels at distance r from
the impurity is modeled by53

Vscr�r� =
A�d�

r3 , �7�

where

A�d� =
e2

4��0�b

qTF�1 + qTFd�
qTF

3 , �8�

with �b denoting the relative permittivity of the material. The
Thomas-Fermi screening wave number qTF is, for the low
temperatures considered, approximated by qTF�2 /aB, where
aB is the effective Bohr radius. As typical values for a GaAs
semiconductor we take �b=13.8 and aB=9.8 nm.

As the distance d of the impurity layer is made very short
�d
30 nm in the present scaling�, the corresponding trans-
mission spectra �not shown here� are drastically changed
with respect to the clean case �see Fig. 2� as a result of the
influence of the impurity potential on the transport through
the device. The randomized potential landscape in the dot
chain leads to a spatial deformation of the existing states and
a breaking of the symmetries present in the clean system.
The sharp Fano resonances are shifted due to the perturba-
tion of the confined eigenstates in each dot differently for
each individual impurity configuration. The impurity poten-
tial also changes the energies of the leaking states, which
results in modified conditions for their coupling to the leads,
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cS

N

0.7 KΘ =

1.0 KΘ =

1.4 KΘ =

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

FIG. 7. Switching ratio Sc
�N�=S�N��B=Bc�20 mT� for varying

number of dots N with connecting bridge length L=W for different
temperatures �.
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so that the broad transmission maxima are shifted, too. Ad-
ditionally, new transmission peaks are introduced by leaking
states that did not contribute in the clean case due to their
symmetry.15 For not too short impurity layer distance d
though, the described suppression valley in the conductance
of the clean system is retained, still making it sensible to
speak about magnetic conductance switching. The effects of
disorder are of course enhanced with increasing impurity
density; we use here a value of nimp=0.0025 nm−2. This
rather high density of remote impurities is employed here in
order to intensify their impact on transport in our simula-
tions, whereas in practice cleaner samples are realizable for
use in semiconductor nanostructures.54,55

In Fig. 8 the switching ratio in the presence of remote
impurities Simp

�2� �B=Bc� is shown as a function of the distance
d from the impurity layer for two connected ovals. The val-
ues of Simp

�2� for each d are the average over 27 configurations
of the randomly distributed impurities. When the impurity
layer is closer to the 2D conducting structure, the average
switching ratio is in general lower than its value in
the clean system, with the latter being practically reached
for a distance d�d0���, depending on the temperature.
For ��1 K we have d0�100 nm, corresponding to a
transport mean free path ltr�24 �m in the first Born
approximation.53 Nevertheless, the relatively large deviations
from the mean indicate that, for each d
d0���, there are
certain impurity configurations that provide a switching ratio
much higher or lower than the average. This is due to the
high sensitivity of Goff with respect to the potential pattern
that is formed on the plane of the array. If the impurity con-
figuration is, for example, such that a potential maximum is
blocking the opening of a cavity to a lead, then Goff is sup-
pressed, as the wave coming from the lead is strongly back-
scattered. This backscattering can be lifted when the mag-
netic field is turned on, leading to an overall increased
switching ratio for this configuration. On the other hand,
when the configuration of the impurities does not block the
leads, Goff in the suppression valley is slightly higher com-
pared to the clean case due to the additional resonances in
the transmission, causing a reduced switching ratio. Thus, at
distances where the potential on the 2DEG plane is not too
strong to permit transmission at all, the randomly distributed
impurities lie within a broad variation between the cases of
blocking and nonblocking configurations, keeping the devia-

tions from the mean high. When the impurities are put too
close to the 2D structure �d
30 nm�, the shape specific
suppression feature of the zero-field transmission is essen-
tially lost, so that the overall conductance is practically un-
affected by the field strength, which thus minimizes the
switching effect. For larger impurity layer distances the mean
Simp

�2� eventually saturates into the clean case value with de-
creasing deviations, as the potential becomes too weak to
affect the transmittive states in the dots.

Using random impurity distributions to investigate the
functionality of magnetic current switching in a more realis-
tic environment, one can speak of a temperature-dependent
lower bound of the switching ratio �see Fig. 8� depending on
the specific setup. This lower bound is increased as the in-
fluence of disorder is suppressed, that is, when a longer mean
free path for the electrons is achieved. Technological
progress actually makes it feasible to reach mean free paths
in heterostructures comparable to the size of realizable nano-
scale devices.54,56,57 The almost ballistic nature of electron
transport then allows for controllable conductance switching
at low temperatures, in the sense that it is determined by the
specific shape of the conducting device, the electron energy,
and the applied magnetic field.

IV. CONCLUSIONS

Having investigated the transmission properties of a linear
array of equidistant identical oval-shaped quantum dots, we
demonstrated the functionality of such a structure as a mag-
netically controlled switching device in the deep quantum
regime. The switching effect arises from the lifting of a de-
formation specific suppression in the transmission of the oval
when a weak perpendicular field is turned on. The suppres-
sion valley in the transmission results from the destructive
interference of states in the dots that are strongly coupled to
the leads and is specific to the elongated shape of the single
billiard. This makes the effect relevant in systems of simi-
larly shaped dots �e.g., elliptical�. The switching ratio oscil-
lates with the magnetic field strength, but as the effect is
prominently present even at very weak fields, we have con-
centrated on its first peak. We have shown that the extension
of the single dot into a chain of dots causes a much higher
switching ratio due to a stronger suppression of the zero-field
conductance. However, we point out that almost optimal
switching can be obtained by connecting only one more dot
to the single one, giving a multiple value for the switching
ratio while keeping the system size small. This could make
the device practically advantageous but also favors quantum
coherence itself, which is the principal requirement for the
interference effects to take place. The efficiency of switching
is lowered with increasing temperature, as the desired shape
specific characteristics of the transmission spectra are ther-
mally washed out, which poses a limitation to low tempera-
tures �up to about 2 K�. In spite of the possibility to achieve
mean-free paths of the 2DEG much longer than the extent of
the studied system, we have additionally investigated the ro-
bustness of the switching ratio in the presence of impurity
scattering. The switching ratio acquires a higher or lower
value than in the clean case depending, respectively, on
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FIG. 8. Configuration mean and standard deviation of the
switching ratio Simp

�2� �B=Bc� of two connected dots as a function of
the impurity layer distance d for different temperatures. The dashed
lines give the values Sc

�2� of the disorder-free case.
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whether the impurity configuration is blocking transport at
zero magnetic field or not. Thus, for randomly distributed
impurities a temperature-dependent lower bound for the
switching ratio of a sample can be set. The efficiency of
magnetoconductance tuning then remains to be specified for
the individual device. Conclusively, it is demonstrated that
electron billiards of specific geometry and chains thereof can
be used, due to regularities in the suppression of their trans-
mission, to design low-temperature magnetoconductance.
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